
1.
2.

Standard for receiving audit-messages from BankID self-
service (BASS)
This integration guide is designed to help you, as a client receiving audit events from our service, set up and manage the integration. The standards used
for delivering events are CloudEvents delivered through Webhooks over HTTPS.

When the user resets their BankID password, messages are sent in two rounds:

One is sent before we send a command to the RA, signaling the intent to perform a password change. At this point, the user can not abort.
One is sent after we have sent the command to the RA and received a response, with OK or Failed status.

Table of Contents

1. Introduction

1.1 Audit events in the future

2. Integration Steps

2.1. Send us required information
2.2. Validate subscription
2.3. Receive audit events
2.4 Example Cloudevents subscriber

3. Handling Cloudevents

3.1 Types
3.2 Data fields
3.3 Handle incorrect messages

4. Advanced Configuration

4.1. Webhook URL
4.2. Authentication

5. Troubleshooting

6. Further documentatin

1. Introduction

From the Cloudevents documentation;

CloudEvents is a specification for describing event data in common formats to provide interoperability across services, platforms
and systems.

By utilizing Cloudevents delivered to a Webhook over HTTPS, we adhere to standard protocols decoupled from specific libraries or SDKs. In this guide, we
aim to provide you with the necessary information to set up a receiver capable of receiving audit events from our systems.

1.1 Audit events in the future

While the current integration only send audit events related to password reset, this will likely be expanded in the future with new messages. Some example
use-cases for sending out audit events are;

App activation as OTP
Automatic block of BankID certificate based on anti-fraud signals
Biometric activation

2. Integration Steps

2.1. Send us required information

The required information is the following:

Webhook url: This is the full URL you will receive events on. It has to be publicly accessible from the internet, in all environments.
Authentication: One of

Static token: A static token sent in the Authorization header
AppId and TenantId: Application ID for our application registration in your Azure AD tenant and Tenant ID for your Azure tenant.

For further information regarding authentication, see separate bulletpoint bellow.

2.2. Validate subscription

Once we attempt to create the subscription, a subscription validation request will be sent to the provided URL by a call. A header, HTTP Options WebHoo
, will be included in this request. It contains a DNS expression identifying the system sending the events. At the time of writing, this will k-Request-Origin

be " "eventgrid.azure.net

To accept the subscription, reply with HTTP Status 200 and the following two headers:

WebHook-Allowed-Origin: One of two possible values; the same value as was sent in the WebHook-Request-Origin header or an asterix(“*”)
WebHook-Allowed-Rate: An asterix(“*”) to indiciate no rate limitation, or a positive integer number to indicate requests per minute.

There are more headers sent in the request, both standard http-headers and application-specific headers, but the headers mentioned here are the ones
you have to strictly handle to validate the subscription

2.3. Receive audit events

Events will be delivered in two rounds – one right before the reissue command is sent to FOI, and one right after indicating the status. These are sent
asynchronously, meaning that the command might have been executed before you receive the events. If the delivery fails, a retry with exponential backoff
will be retried on a best-effort basis. If the delivery still fails after 24 hours, the event is sent to our dead-letter storage for manual processing and
debugging.

Response code for a successfull delivery be one of , , , or . A response code of , , , and will stop retries and must 200 201 202 203 204 400 401 403 404 413
put the event in our dead-letter event storage. Other failure codes will be retried as described above. If repeated failures occurs during a short time, all
deliveries to the endpoint may be suspended for up to several hours.

2.4. Example Cloudevents subscriber

An example implementation of a Cloudevents subscriber can be found here; https://github.com/BankIDNorge/example-cloudevent-subscriber

It is written in Typescript for Azure Functions.

3. Handling Cloudevents

A reworked example request from the Cloudevents documentation can be seen here:

POST /your-subscription HTTP/1.1
Host: webhook.example.com
Content-Type: application/cloudevents+json; charset=utf-8
Content-Length: nnnn
Authorization: a-token

{
 "specversion" : "1.0",
 "type" : "com.example.someevent",
 ... further attributes omitted ...
 "data" : {
 ... application data ...
 }
}

Two main things to note about the payload are the type and data fields.

3.1 Types

Type will have one of two values:

no.bankid.bass.audit.reissue.init.v1 Used for events sent right the reissue command is sent. This signals the intent that the user will before
now perform a password reset, and the user can no longer abort.
no.bankid.bass.audit.reissue.completed.v1 Used for events sent right the reissue command is sent. This signals that the command has after
been sent, and will specify if the command was successful or failed.

3.2 Data fields

Data will be a json with the following specification;

Parameter Type Possible values Sample data Description Required

sessionid String 7468bdd3-274b-4e2f-b7bb-
65dad59ce8a9

SessionID of the transaction. Is only valid for a single password reset. Yes

authenticati
on

String BIM BIM Authentication method used to identify the user Yes

action String REISSUE REISSUE Actual operation Yes

https://github.com/BankIDNorge/example-cloudevent-subscriber

1.
2.

1.
2.
3.
4.
5.
6.

orderid String 1012-1667319077298 OrderID of the BankID Yes

time String 2022-10-26T14:15:51.978Z Execution timestamp(ISO8601) of the reissue command. Not set for
events with status=BEGIN

No

status String BEGIN, SUCCESS,
FAILURE

SUCCESS Status of the transaction. Yes

additionalInfo String Details information if applicable to action, like error message in case
of failure

No

3.3 Handle incorrect messages

While the messages are defined, typos and errors may occur on either end. As such, you need to have proper handling of errors related to the messages -
such as, but not limited to, unknown type, unknown data fields, missing data fields, unknown data values etc.

If you discover incorrect messages, contact us for troubleshooting. Please include the full message and time of delivery.

4. Security

4.1. Webhook URL

The following requirements for the webhook URL are absolute:

It must be publicly accessible
It must be available via HTTPS with a valid certificate
It must accept Options and Post calls

4.2. Authentication

To prevent anyone from calling your subscription webhooks, there needs to be a layer of authentication. We support the following three options:

Static token in the authorization header
Azure AD App

Authorization header

For the static options, we need to agree on a routine for rolling the secret. You will also need to accept both the old and the new token, at least for a short
periode of time, while we update our system with the new token. The format will be .authorization: api-key <static-token>

Azure AD App

For Azure AD App, you need to perform the following steps:

Create an .Azure AD app for your Webhook
Create a service principal for if it doesn't already exist.Microsoft.EventGrid
Create a role named in the .AzureEventGridSecureWebhookSubscriber Azure AD app for your Webhook
Create a service principal for our if it doesn't already exist.event subscription writer app
Add service principal of event subscription writer Azure AD app to the AzureEventGridSecureWebhookSubscriber role
Add service principal of Microsoft.EventGrid to the AzureEventGridSecureWebhookSubscriber role as well

Link to source for these steps: Secure WebHook delivery with Azure AD Application in Azure Event Grid
Note that the link also contains a Powershell script which can perform the setup. For step 4, and the variable, you'll eventSubscriptionWriterAppId
need the relevant applicationID from us, which will be provided on request.

We have one app for test and one for production, so some or all of the steps will have to be duplicated depending on your setup. If you decide on creating
one Azure AD App for the webhook in each environment, all but the second step will have to be duplicated. If you go for just one Azure AD App, only step
4 and 5 will have to be duplicated. appId for the two apps will be provided to you on request.

Once you have finished setting up the service principals, roles and Azure AD Apps, send us the following info:

Your Azure tenant ID
appId of the Azure AD Apps that was created

5. Troubleshooting

Validation of subscription fails

Check that firewalls are open according to 4.1.
Check that you accept the correct Content-Type("application/cloudevents+json; charset=utf-8")

6 Further documentation

https://learn.microsoft.com/en-us/azure/event-grid/scripts/powershell-webhook-secure-delivery-azure-ad-app

Azure Event Grid: https://learn.microsoft.com/en-us/azure/event-grid/
Endpoint validation with Azure Event Grid: https://learn.microsoft.com/en-us/azure/event-grid/webhook-event-delivery
Event Grid CloudEvents Schema: https://learn.microsoft.com/en-us/azure/event-grid/cloud-event-schema
Webhook delivery with Azure AD: https://learn.microsoft.com/en-us/azure/event-grid/secure-webhook-delivery

https://learn.microsoft.com/en-us/azure/event-grid/
https://learn.microsoft.com/en-us/azure/event-grid/webhook-event-delivery
https://learn.microsoft.com/en-us/azure/event-grid/cloud-event-schema
https://learn.microsoft.com/en-us/azure/event-grid/secure-webhook-delivery

	Standard for receiving audit-messages from BankID self-service (BASS)

